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Abstract
In this paper, we propose an exotic quantum paramagnetic state in two-dimensional
antiferromagnets—the spontaneous trimer state—which is the direct product state of the trimers
of spins. Each trimer is a singlet state formed by three neighboring spins with SU(3) symmetry.
A frustrated spin-1 Heisenberg model in the kagome lattice is investigated. By analogy to the
pseudo-potential approach in the fractional quantum Hall effect (FQHE), we find that the trimer
state provides a good description for the exact ground state of this model. Other interesting
properties, such as the local excitations as well as magnetization plateaus have also been
investigated.

(Some figures in this article are in colour only in the electronic version)

The nature of quantum paramagnetic phases of two-
dimensional (2D) antiferromagnetic systems has attracted
considerable attention in the past 20 years because of
its potential association with the physics of the cuprate
superconductors [1]. Because of the absence of long-range
order in the quantum paramagnetic phase, a central problem is
the classification of the phases and critical points. According
to their symmetries, we could classify these phases into two
classes. The first kind is known as the ‘spin liquid state’, which
restores the SU(2) symmetry of the Néel state and does not
break any symmetry of the original Hamiltonian. One of the
well-known state in this class is the resonating valence-bond
(RVB) state [2], or the ‘spin liquid’ state [3].

On the other hand, Read and Sachdev have presented
another possibility [4] based on the Schwinger boson analysis
of the SU(N) quantum antiferromagnets. Their key point
is that the condensation of the instantons with the Berry
phase leads to the spontaneous breaking of the spatial
symmetry (translational or rotational symmetry) of the original
Hamiltonian. Similar to the solid, this state possesses a short-
range order and thus is nominated as the valence-bond solid
(VBS) state. The structure of the VBS state depends on 2S
(mod 4), where S is the spin of the SU(N) model. For the
usual spin 1/2 systems, the corresponding VBS state is known
as the ‘dimer state’, where two nearest spins form a singlet or
a dimer: (↑↓ − ↓↑)/

√
2 and the overall state is the direct

product state of all those dimers.
The dimer state was first proposed as the exact ground

state for the Majumdar–Ghosh (MG) model [5], which is an

antiferromagnetic spin chain with nearest and next nearest
neighbor interactions. For a particular ratio of those exchange
interactions, the model is exactly solvable and has a two-
foldly degenerate dimer ground state. Inspired by the exact
solution of the MG model, Shastry and Sutherland proposed
a 2D model [6] known as the Shastry–Sutherland (SS) model,
whose ground state is the exact dimer state in two dimensions.
It has been used in understanding the physical properties of
SrCu3(BO3)2 [7], which is topologically equivalent to the SS
model.

Most of the above research focused on the spin-1/2
systems, however, as to the spin-1 strongly correlated systems,
more and more interesting novel quantum paramagnetic phases
have been discovered. One of the well-known examples is
the Affleck–Kennedy–Lieb–Tasaki (AKLT) state [8], which
breaks no symmetry of the Hamiltonian and is believed to
provide a good description for the ground state of the pure
1D spin-1 Heisenberg chain [9, 10]. As to the 2D case,
the situation is apparently more complex, the VBS state in
the spin-1 quantum paramagnetic phase could be either the
dimer state [11] that spontaneously breaks the translational
symmetry, or a generalized AKLT state [10] that only breaks
the rotational symmetry.

In this paper, we present an exotic VBS state called the
‘trimer state’ for the spin-1 system, which is an analogue to its
counterpart in a spin-1/2 system: the dimer state. Such a state
is a direct product state of trimer singlets and each spin singlet
is formed by three spins with the total spin zero. Inspired by
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Figure 1. (a) The structure of the frustrated Heisenberg model in the
kagome lattice, with the nearest coupling J , the second nearest
coupling J1, and the third nearest coupling J2. (b) One block consists
of five sites and each one equally couples with the others.

the seminal work of [9], we construct a frustrated Heisenberg
model in a kagome lattice, and find that at a particular ratio
of the different couplings, the ‘trimer state’ provides a very
good approximation for the exact ground state of this model,
which means that the wavefunction overlap between the trimer
state and the exact ground state of this model is very close
to 1. Similar states have been discussed in an SU(3) spin
tetrahedron chain [12–15] and in the kagome lattice with
distorted coupling [16]. To our knowledge, we provide
the first example in an isotropic 2D SU(2) antiferromagnet
with uniform coupling, where the spins are spontaneously
trimerized. Then we investigate the excited properties and
the magnetization plateaus in the applied magnetic field. It
is believed that this state represents a class of the VBS
state: N neighboring spins cluster together to form a singlet
with SU(N) symmetry and spontaneously break the lattice
symmetry (translational or rotational). Within a cluster, each
spin is maximally entangled with other spins. We call this
kind of state a ‘cluster state’ while the usual dimer state is the
simplest case.

The ground state of the quantum antiferromagnetic
Heisenberg model on the kagome lattice has been intensively
investigated by various methods, but is still far from being
totally understood even for the spin-1/2 case. Recently, Laws
et al found a Ni2+-based material: Ni3V2O8 [17], which
is topologically equivalent to a frustrated spin-1 Heisenberg
model in a kagome lattice. The spin-1 model on the kagome
lattice has been investigated in several works [18–21], but most
of them focus on the uniaxial anisotropic case. Here we focus
on the SU(2) case and introduce the second nearest 〈〈ij〉〉
and the third nearest [ij] couplings J1 and J2. Explicitly, the
Hamiltonian for this model is given by

H = J
∑

〈i,j〉
Si · Sj + J1

∑

〈〈i,j〉〉
Si · Sj + J2

∑

[i,j]
Si · Sj, (1)

with the structure schematically shown in figure 1.
In this paper we focus on the point J = 3J1 = 3J2

and investigate the ground state at this point by the ‘pseudo-
potential approach’, which was first used to get the famous

Laughlin wavefunction in the FQHE [22]. The analogy
between the Heisenberg model and the FQHE was first
introduced by Arovas et al [9] in the 1D case, where the
Hamiltonian of a spin-1 antiferromagnetic Heisenberg model
is decomposed into the summation of projection operators

H1 =
∑

i

Si ·Si+1 =
∑

i

[3P2(i, i+1)+P1(i, i+1)−2]. (2)

Observing that the AKLT state [8] is the exact ground state
of the first part of the summation of projection operators∑

i 3P2(i, i + 1), where P S(i, i + 1) projects the spin state
of the bond (i, i + 1) onto the subspace with total spin S. They
took it as a trial ground state of the spin-1 Heisenberg chain
and consider the second part

∑
i P1(i, i + 1) as a perturbation.

It turns out that the AKLT state is a very good approximation
of the exact ground state of equation (2) and numerical results
show that the difference between the ground state energies
of these two states is within 5%. Recently, we generalized
this method to the 2D spin-1 J1 − J2 antiferromagnetic
model [10], and found that at the maximal frustrated point
(J1 = 2J2), the ground state could be described by a two-
fold 2D generalized AKLT state, which completely agrees with
the general prediction from field theory [4], and was verified
by the 2D Density Matrix Renormalization Group (DMRG)
result [23].

Next we use a similar method to investigate the ground
state of equation (1). Notice that at the point J = 3J1 = 3J2,
equation (1) could be rewritten as the sum of identical blocks
Bα , as shown in figure 1(b). Each block is constructed of
five spins and every spin is coupled to the other four spins
identically, thus we have

H/J1 =
∑

α

Bα with Bα =
∑

i,j∈α

Si · Sj = 1
2 S2

α − 5 (3)

where α denotes the αth block, and Sα = ∑
i∈α Si is the total

spin operator of the five spins within the αth block. Then we
expand this block Hamiltonian by the projection operators of
the total spin in a block in terms of the projection operators:

Bα =
5∑

S=0

CSPS
α − 5 with Cs = S(S + 1)/2. (4)

The operator PS
α projects the spin state of the αth block onto

the subspace with total spin S: PS
α|S′〉 = δS,S′ . PS

α is defined
as:

PS
α =

∏

i 	=S

S2 − i(i + 1)

S(S + 1) − i(i + 1)
. (5)

To make progress, we further decompose it into two parts

Bα = B0
α + B1

α,

with B0
α = 15P5

α + 10P4
α + 6P3

α − 5 and B1
α = 3P2

α +
P1

α. Dividing the original Hamiltonian into two parts is
inspired by the success of Haldane’s pseudo-potential method
in FQHE [22] and the model of the spin-1 chain [9]. Returning
to our spin model, now it is clear why we divided the
Hamiltonian like this; notice that the coefficient decreases
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Figure 2. (a) and (b) The two-fold degenerate ground states: |�a〉
and |�b〉. (c) The structure of one trimer: an AKLT chain with length
L = 3 and periodical boundary condition.

rapidly as S descends, thus if we can find the exact ground
state of B0 = ∑

α B0
α , we can treat the left part B1 = ∑

α B1
α

and investigate the properties of the ground state.
First we focus on the exact ground state of the model

B0 =
∑

α

[15P5
α + 10P4

α + 6P3
α − 5]. (6)

Since B0
α is positive semidefinite, any state with the total

spin of each block ST
α � 2 is the exact ground state of

equation (5). We can find that the only possibilities are the two-
fold degenerate states: |�a〉 and |�b〉, as shown in figures 2(a)
and (b), where each block possesses a trimer singlet. We can
classify all the triangles in the kagome lattice into two classes:
A and B. |�a〉 (|�b〉) is the direct product state of the trimer
singlets within the A(B) triangles:

|�a(b)〉 =
∏

i∈A(B)

|S〉i

|S〉i = 1√
6
(|1,−1, 0〉 − |1, 0,−1〉 + |0, 1,−1〉

− |0,−1, 1〉 + |−1, 0, 1〉 − |−1, 1, 0〉)

(7)

the index i represents the dual lattice site and is located in the
center of the triangles of the kagome lattice. |S〉i is a singlet
composed of three spins on neighboring sites within the i th
triangle. Because there exists a trimer singlet in each block,
the total spin of each spin block could not be larger than 2.
Therefore it is straightforward that we have found the exact
ground states of B0, or in other words, the trial ground state of
our original Hamiltonian equation (3).

Now we will discuss the effect of the perturbation part.
Since the trial ground states are two-fold degenerate, there
seems to be a possibility that the perturbation would resonate
these two trial ground states |�a〉 and |�b〉 to form a linear
superposition and further lower the energy of the ground state.
However, we would show this is not the case, at least in the
thermodynamic limit. Let us calculate the nondiagonal term
〈�a|H |�b〉, it is not difficult to find that this nondiagonal

term vanishes in the thermodynamic limit (N → ∞), just
like the 1D MG model. So the perturbation would not shift
the two-fold degeneracy of the trial ground states and we can
safely conclude that |�a〉 and |�b〉 provide a good description
for the Hamiltonian equation (3). It is straightforward to get
the ground energy of this variational ground state at the point
J = 3J1 = 3J2

〈�a|H |�a〉 = − 3
2 J N, (8)

where N is the number of triangles in the lattice.
Here we would briefly discuss the validity of the

perturbation method we used above. The success of our
perturbation method depends on the difference between the
coefficients of the projection operator in the unperturbed
Hamiltonian and that in the perturbation part. In our model,
the rapidly decreasing coefficients of the projection operator
as S descends make sure that the perturbation method works
very well (actually, we have applied a similar method to the
frustrated spin-1 Heisenberg model in the square lattice [10],
and obtained a result which is consistent with the numerical
result [23]). Usually, when we consider a certain variational
wavefunction as a good approximation for the ground state of
a Hamiltonian, there are two-fold meanings: (i) the variational
energy is as low as possible; (ii) the variational wavefunction is
close to that of the real ground state, which means the overlap
between these two wavefunctions is close to 1. Indeed, it is
possible to find other variational wavefunctions which provide
the same or even lower variational energy for Hamiltonian
(1). However, without the perturbation method, condition (ii)
cannot be satisfied. Take our model for example, we can
construct another state |�c〉 [24], an arbitrary covering of the
kagome lattice with nearest neighbor dimers ( 1√

3
|1,−1〉 −

|0, 0〉 + |−1, 1〉). It is well known that such a covering
necessarily contains N/4 triangles for which no bond is
occupied (defaults) and 3N/4 triangles with a dimer. It is easy
to verify that the variational energy of �c is exactly the same as
�a or �b. However, this does not mean that �c also provides
a good approximation of the real ground state, because it does
not satisfy condition (ii).

It is also interesting to study the properties of the excited
states as well as the magnetization process of this model.
It is well known that for the 2D dimer model, there are
magnetization plateaus in the magnetization curve because of
the localization of the single triplet excitation [7, 25, 26]. It is
natural to ask whether this happens in our model. Notice that
for a single trimer, the lowest excitation state is the triplet state,
which is the direct product of a dimer singlet composed of two
spins and a single spin-1. The triplet state is shown in figure 3.
For convenience, we use |m〉 to denote the trimer singlet in the
mth triangle being excited to a triplet:

|m〉 =
∏

i 	=m

|S〉i

⊗
|T 〉m

|T 〉m = 1√
3
(|1,−1〉 + |−1, 1〉 − |00〉)

⊗
|α〉

(9)

where α = 1, 0, or −1 represent the spin state of the single
spin-1. To study the low energy excitation of this model. We

3



J. Phys.: Condens. Matter 21 (2009) 456009 Z Cai et al

Figure 3. The triplet excited states: a triplet located at m (a) and
n (b), m and n are nearest neighbor triplets. A triplet is formed by a
dimer of two spin-1 and a single spin-1 (c).

find that
〈m|H |n〉 = 0 (10)

for m 	= n and

〈m|H |m〉 = −J − 3
2 J (N − 1) (11)

where H is the Hamiltonian (3), and |m〉 and |n〉 are shown
in figures 3(a) and (b). The energy spectrum can be calculated
by the single mode approximation (SMA) [9]. A momentum
eigenstate is thus defined as:

|k〉 =
∑

rm

eirm k|m〉. (12)

Using equations (10) and (11), we can get:

〈k|H |k〉 = N(−J − 3
2 J (N − 1)). (13)

The energy spectrum is:

ωk = 〈k|H |k〉
〈k|k〉 − E0 = J

2
(14)

where E0 is the ground state energy defined in equation (8).
Notice that under the single mode approximation, the energy
spectrum ωk is independent of k, which means that the single
triplet excitation is almost dispersionless and thus localized, at
least to the order we considered. Equation (14) also means
that it is gapped, with a gap of 1

2 J . This dispersionless
triplet excitation in our model is different from its one-
dimensional analogue [27, 28], and it would localize or
form a bound pair with other single triplets, just as in the
dimer state [29, 30]. Because of the localization of the
single triplet excitation, there are magnetization plateaus in
the magnetization curve in our model. A simple calculation
will show that at least one magnetization plateau appears at
m/msat = 1/2 corresponding to the phase (c) in figure 3. It is
known that a similar magnetization process and magnetization
plateaus have been studied in other spin-1 systems, such as
the S = 1 spin chain [28] or the S = 1 Heisenberg model

Figure 4. (a) The cluster state (N = 4) in a spin-3/2 ladder. (b) The
structure of an SU(4) cluster singlet. A 3/2 spin can be considered
as a symmetrized state of three 1/2 spins. The bold lines represent a
singlet for two 1/2 spins.

(only including the nearest coupling) in uniform and distorted
kagome lattices [31].

However, we have not considered the effect of the
interactions between the triplets, which may lead to new
plateaus. Furthermore, it is possible that the higher order
interaction would result in a pair of neighboring triplets, similar
to the dimer phase [29, 30].

Now we will discuss the stability of our trimer state. Up
to now, all of our analyses are based on a special point of our
coupling parameters. At this point, the trimer state actually
provides a good approximation of the exact ground state, a
slight perturbation should not change the nature of this ground
state because it is a gapped VBS state which cannot be changed
by a small perturbation unless it can overcome the energy gap.
Just as in the one-dimensional AKLT state, introducing a small
next nearest coupling cannot change the nature of the 1D VBS
state [32].

Usually there are two kinds of perturbation, the first kind
is deviation from the special point of the coupling parameters
J = 3J1 = 3J2, as analyzed above, where slight deviation
will not change the nature of the ground state. However,
there is another important point: J1 = J2 = 0, which
corresponds to the S = 1 antiferromagnetic Heisenberg model
with only nearest coupling. Hida first studied the ground state
at this point by means of exact diagonalization and the cluster
expansion [16]. It is shown that the ground state in this case is
the hexagonal singlet solid (HSS) state, rather than the trimer
state in our case. The second possible perturbation for this
kind of spin-1 system is the spin biquadratic term, which is
necessary to construct the 1D AKLT model [8]. However, as
shown in [9], the exact ground state of the AKLT Hamiltonian
(3P2(i, i + 1) in equation (2)) which includes the biquadratic
term, actually provides a good variational ground state for the
pure S = 1 Heisenberg Hamiltonian without the biquadratic
term. Therefore in our case, the perturbation of including the
small spin biquadratic term would not change the nature of our
trimer state.

The trimer state is not the only example of our cluster
state, another example is the spin-3/2 SU(4) spin ladder [33].
At a particular value of the coupling, the ground state of
this model is the exact spontaneous plaquette ground state, in
which four 3/2 spins form an SU(4) spin singlet plaquette and
spontaneously break the translational symmetry, as shown in
figure 4. This model is a generalization of the MG model to the
spin ladder systems and its ground state belongs to our cluster
state with N = 4.
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In conclusion, we have discussed the spontaneous
trimerization in a frustrated spin-1 antiferromagnet in a
kagome lattice by the pseudo-potential approach. Other
interesting properties such as the magnetization plateaus
appearing in the magnetization curve in our model are also
discussed. We believe that this exotic trimer state could be
verified numerically by the 2D DMRG method.
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